This commit is contained in:
2025-12-02 16:25:01 +02:00
commit 5c4a4e8689
6 changed files with 1504 additions and 0 deletions

3
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,3 @@
{
"liveServer.settings.port": 5501
}

368
ASSIGNMENT.md Normal file
View File

@@ -0,0 +1,368 @@
# Portfolio Project: Data Visualization Portfolio
**Total Points:** 35 + 5 bonus
**Submission:** ZIP archive with index.html, relevant data sources + Video presentation (5-7 minutes)
Optionally: a website published on github pages (not graded)
---
## TL;DR - Quick Overview
**Portfolio with minimum 5 visualizations exploring a unified theme**
**Submit by Week 8:**
- ZIP file with `index.html`, datasets, and `VIDEO_LINK.txt`
- 5-7 minute video presentation
**Must demonstrate:**
- Clear analytical questions (data/task abstraction)
- Justified chart choices and visual encodings
- Professional documentation (titles, labels, legends, sources)
- Sophisticated techniques (interactivity OR layers OR multiple views)
- Coherent narrative connecting all visualizations
**Grade:** 35 points across 5 categories + optional 5-point live presentation bonus
**Tools:** Any visualization tool (Tableau, Vega-Lite, Python, R, D3.js, etc.)
**Data:** Use your own datasets or public data - NOT instructor-provided assignment datasets
**Key checklist:** Each visualization needs meaningful title, source citation, proper labels, appropriate color use, and at least one sophisticated element (interactive/layered/concatenated)
*📖 Read below for complete requirements, grading rubric, and submission details*
---
## Assignment Overview
Create a portfolio of data visualizations that demonstrates your mastery of the principles learned throughout this course. Your portfolio should showcase your ability to transform data into clear, effective visual communication.
**Core Philosophy:** We value well-crafted, sophisticated visualizations that clearly convey useful information. Quality and depth matter more than quantity.
---
## What You Need To Do
Create a portfolio containing **minimum 5 visualizations** that demonstrate your understanding of:
- Data and task abstraction (Munzner's framework from Week 2)
- Visual encoding principles
- Chart selection and design rationale
- Color theory and accessibility
- Technical implementation skills
**Submit:**
1. **ZIP archive** (`Portfolio_[LastName]_[FirstName].zip`) containing:
- `index.html` (your portfolio - template provided)
- All datasets referenced in your visualizations
- AI usage documentation (if applicable - see policy below)
2. **Video presentation** (5-7 minutes):
- Walkthrough of your portfolio
- Highlight key visualizations and design decisions
- Discuss what you learned
- Upload to YouTube/Google Drive and **embed link in your index.html**
---
## Technical Requirements
### Dataset Requirements
**❌ Prohibited:**
- Instructor-provided datasets from assignments (Bikeshare, World Energy, OWID Population)
- Default tutorial datasets (vega-datasets, Tableau samples, Iris, Titanic, etc.)
**✅ Allowed:**
- Datasets YOU brought to previous assignments (reuse is fine)
- Makeover Monday datasets not used in class
- Your own research/work data
- Government open data portals
- Kaggle datasets (non-tutorial)
- Domain-specific professional datasets
**You may reuse your own previous assignment work IF you brought your own data.**
**All data sources must be cited with links where possible.**
### Tools & Technologies
**You have complete freedom** to use any visualization tool(s):
- Vega-Lite (learned in class)
- Tableau Public (learned in class)
- Python libraries (Altair, Matplotlib, Plotly, etc.)
- R (ggplot2, etc.)
- D3.js, Observable notebooks
- Any other professional visualization tools
**Tool choice does NOT affect grading.** Mastery of one tool is equally valid as using multiple tools. Use what works best for your visualizations.
**Critical requirement:** Source code must be available. For Tableau, visualizations must be published in YOUR Tableau Public account (not mine, not a classmate's).
### Refining Previous Work
You may include enhanced work from Assignments 2-4, IF:
- You brought your own dataset (not instructor-provided data)
- You've significantly improved it: new analytical question, different chart type, added interactivity/layers, substantially better documentation
Simply resubmitting assignment work with minor label changes will not earn full credit.
---
## Visualization Quality Checklist
**Every visualization must include (or explicitly explain why not applicable):**
**Meaningful title** - Not "Chart 1" but "GDP Growth Rates in Eastern Europe, 2010-2020"
**Source citation** - Where the data came from, with link if possible
**Appropriate labels** - Axis labels, value labels where needed, units specified
**Legends when necessary** - If using color/size/shape encoding, provide legend
**Appropriate use of color** - Color is used meaningfully and corresponds to the data type (categorical / sequential / diverging / highlight)
**At least ONE of these:**
- **Interactive elements** (filters, tooltips, brushing/linking)
- **Layered marks** (multiple mark types composed together)
- **Concatenated views** (small multiples, hconcat/vconcat, or dashboard composition)
**If any checklist item doesn't apply to your visualization, you must explain why in your documentation.**
Example: "No legend needed because color encodes the same information shown on the x-axis labels."
---
## Portfolio Structure
We've provided a template HTML file (see course materials). Your portfolio should include:
### Introduction Section (3-5 sentences)
Explain your portfolio theme - the common question or domain you're exploring. This is required for full points.
**A "theme" means:** A common question or domain explored through multiple visualizations.
**Good themes:**
- "Economic inequality in Ukraine" - 5 visualizations exploring different dimensions
- "My company's user behavior" - 5 visualizations answering related business questions
- "Climate change impacts" - 5 visualizations showing different evidence
**Not a theme:**
- 5 random visualizations on unrelated topics
- "Visualizations I made for class" without connecting narrative
### For EACH Visualization:
1. **Context & Question** (1-2 sentences)
- What analytical question does this address?
- Why is this question important?
2. **Design Decisions** (2-3 sentences)
- Chart type selection and rationale
- Visual encoding choices (position, color, size, etc.)
- What alternatives did you consider and why did you choose this approach?
- What are the strengths and tradeoffs of your choice?
3. **The Visualization Itself**
- Must render and work properly
- Must meet quality checklist (or explain exceptions)
4. **Key Insights** (2-3 sentences)
- What patterns, trends, or outliers did you discover?
- What should viewers take away from this visualization?
5. **Data Source Citation**
- Where did the data come from?
- Include links if possible
---
## Grading Rubric (35 points)
### Technical Execution (10 points)
**All visualizations render correctly, proper tool usage, source code available**
- **10 pts:** Perfect execution, no errors
- **8 pts:** Minor issues (one viz loads slowly, small formatting glitch)
- **6 pts:** Multiple problems affecting experience
- **<6 pts:** Significant technical failures
**Source code requirement:** For Tableau, visualizations must be in YOUR Tableau Public account. For code-based tools, include specifications in your HTML. (you can use LLMs to aid if not sure about how to format code in HTML)
### Theoretical Understanding (10 points)
**Data/Task Abstraction (5 pts):** Clear analytical questions, appropriate data transformations
**Design Rationale (5 pts):** Justified chart selections, discussion of alternatives and tradeoffs, addresses "why this chart type?"
### Visual Communication (5 points)
**Clarity & professional documentation**
- Visualizations clearly convey useful information
- Proper titles, labels, legends (per checklist)
- All sources cited
- Clean, professional presentation
### Complexity & Polish (5 points)
**Majority of visualizations meet the quality checklist**
- **5 pts:** All 5+ visualizations meet checklist requirements
- **4 pts:** 4 visualizations meet full checklist
- **3 pts:** 3 visualizations meet full checklist
- **<3 pts:** Fewer than 3 meet requirements
### Coherent Portfolio Theme (5 points)
**Portfolio tells a unified story**
- **5 pts:** Clear theme, explicit connections between visualizations, coherent narrative in introduction
- **3-4 pts:** Weak theme or connections not clearly articulated
- **0-2 pts:** No discernible theme, random collection of visualizations
---
**Additional Deductions:**
- Video >7 minutes: -2 points
- Video <4 minutes: -2 points
- Missing or inaccessible video: -5 points
- Missing AI documentation (if AI was used): -5 points
- Fewer than 5 visualizations: Up to -10 points depending on severity
---
## Bonus: Live Portfolio Presentation (+5 points)
**Optional:** Present your portfolio live during Week 8 classes.
**Requirements:**
- 10-minute presentation + 5-minute Q&A
- Must opt-in by **end of Week 7** via Slack
- Present live (no pre-recorded videos)
- Demonstrate your portfolio and discuss design choices
**This is separate from the theme requirement.** The live presentation is a bonus opportunity for students who want to showcase their work and potentially recover points from earlier assignments.
**Limited slots available** - first come, first served after opt-in.
---
## Video Presentation Requirements
**Purpose:** The video serves as documentation of your work and ensures we can evaluate your portfolio even if technical rendering issues occur.
**Duration:** 5-7 minutes (videos under 4 minutes or over 7 minutes will be penalized)
**Content to cover:**
1. **Introduction** (30-60 seconds): Your portfolio theme and approach
2. **Visualization walkthrough** (3-5 minutes):
- You may highlight 2-3 key visualizations in depth, OR
- Briefly cover all 5+ visualizations
- Focus on design decisions and key insights
3. **Reflection** (30-60 seconds): What you learned
**Technical:** Upload to YouTube or Google Drive storage and **include the link prominently in your index.html** (for example, in the Introduction section or create a dedicated "Video Presentation" section at the top).
If uploading to Google Drive, **make sure to enable external access to your video!**
---
## Deployment to GitHub Pages (Optional)
We provide instructions for deploying your portfolio to GitHub Pages, making it publicly accessible. **This is completely optional and NOT graded** - I recognize this is a data visualization course, not a web development course.
Benefits of deploying:
- Shareable portfolio link for your CV/LinkedIn
- Professional online presence
- Easy to show potential employers
You can also run everything locally if you prefer. Deployment guide is provided separately in the repository.
---
## Submission Checklist
Before submitting, verify:
**Portfolio Content:**
- [ ] Minimum 5 visualizations included
- [ ] All visualizations render and work properly
- [ ] Each visualization meets quality checklist (or explains why not)
- [ ] Introduction section explains portfolio theme
- [ ] Each visualization includes: Context, Design Decisions, Insights, Data Source
- [ ] All data sources cited with links where possible
**Technical Files:**
- [ ] `index.html` file at root of archive
- [ ] All referenced datasets included in archive
- [ ] File named correctly: `Portfolio_[LastName]_[FirstName].zip`
**Video Presentation:**
- [ ] 5-7 minutes duration
- [ ] Covers portfolio theme, key visualizations, and learnings
- [ ] Link included in index.html
**Documentation:**
- [ ] AI usage documented if applicable (shared conversation links or PDFs)
**Optional:**
- [ ] Opted in for live presentation (by end of Week 7)
- [ ] Deployed to GitHub Pages
---
## Academic Integrity & AI Usage
### AI Tools Policy
**All AI usage must be documented:**
- Include links to shared LLM conversations, OR
- Attach PDF exports of your conversations
- Create a folder in your ZIP called `AI_Documentation` with these files
**Make it trivial for graders to access your AI usage history.**
**Remember:** AI can help with code syntax or brainstorming, but design decisions and analytical insights must reflect YOUR understanding of visualization principles.
### Originality
- Do not copy visualizations from online sources
- Do not submit someone else's work
- If reusing existing visualizations from previous assignments, document this clearly
- Your analysis and design decisions must be your own
---
## Final Reminder
**The goal isn't to impress with technical wizardry (though that's welcome).**
**The goal is to demonstrate that you can:**
- Transform data into clear, effective visual communication
- Apply systematic design principles
- Make justified choices about visual encodings
- Reveal insights that tell compelling stories with evidence
Your portfolio should show that you understand WHY certain visualizations work better than others, and that you can create professional-quality work that communicates effectively.
Good luck, and we look forward to seeing your portfolios!

113
PUBLISHING.md Normal file
View File

@@ -0,0 +1,113 @@
# Publishing Your Portfolio Online (Optional)
This guide shows you how to enable **GitHub Pages** to publish your portfolio online for free.
⚠️ **Remember:** Publishing online is **NOT required** and **NOT graded** for the course. You can get full points by submitting the ZIP archive. This is completely optional!
---
## Why Publish Online?
Once your portfolio is live on GitHub Pages, you can:
- ✅ Share it with potential employers
- ✅ Add the link to your CV/resume
- ✅ Include it on your LinkedIn profile
- ✅ Show it during job interviews
- ✅ Share with friends and classmates
**Your portfolio will be available at:**
```
https://your-username.github.io/repository-name/
```
---
## Prerequisites
Before enabling GitHub Pages:
- ✅ Create a GitHub repository with your portfolio by copying this repository
- ✅ Complete your portfolio (`index.html` and all assets)
- ✅ Commit and push your changes to GitHub
- ✅ Your repository must be **Public** (required for free GitHub Pages)
---
## Enabling GitHub Pages
**Time needed:** 2-3 minutes
### Step 1: Go to Your Repository Settings
1. **Go to GitHub** and navigate to your forked repository:
```
https://github.com/your-username/repository-name
```
2. **Click** the "Settings" tab (top menu bar)
---
### Step 2: Configure GitHub Pages
1. **In the left sidebar**, click **"Pages"**
- Look under the "Code and automation" section
2. **Under "Source":**
- Select **"Deploy from a branch"**
3. **Under "Branch":**
- Select **`main`** from the dropdown
- Select **`/ (root)`** from the folder dropdown
4. **Click "Save"**
---
### Step 3: Wait for Deployment
1. **Wait 1-2 minutes** for GitHub to build and deploy your site
2. **Refresh the page**
3. You'll see a message at the top:
```
Your site is live at https://your-username.github.io/repository-name/
```
4. **Click the link** to view your live portfolio!
---
## That's It!
Your portfolio is now published online. Every time you push changes to GitHub, your site will automatically update in 1-2 minutes.
---
## Updating Your Published Portfolio
After you make changes locally:
1. **Commit your changes** in GitHub Desktop or via command line
2. **Push to GitHub**
3. **Wait 1-2 minutes** - GitHub Pages will automatically rebuild
4. **Refresh your portfolio URL** to see the updates
**No need to touch the Pages settings again!** It's all automatic after the initial setup.
---
## ❓ Questions?
If you're having trouble with GitHub Pages:
1. **Ask in course Slack channel** - classmates might have solved the same issue
2. **Contact instructor:** Oleh Omelchenko
---
## 📚 Additional Resources
- [GitHub Pages Documentation](https://docs.github.com/en/pages)
- [GitHub Pages Deployment Guide](https://docs.github.com/en/pages/getting-started-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site)

76
README.md Normal file
View File

@@ -0,0 +1,76 @@
# Data Visualization Portfolio - Quick Start Guide
This is a quick-start guide to help you get started with the portfolio template.
**📖 For complete requirements, grading rubric, and detailed instructions, see `ASSIGNMENT.md`**
## 📋 Quick Overview
**What to submit by Week 8:**
- ZIP archive with `index.html`, datasets, and AI documentation (if applicable)
- 5-7 minute video presentation (link embedded in your portfolio)
**What to create:**
- Portfolio with minimum 5 visualizations exploring a unified theme
- Each visualization needs context, design rationale, insights, and source citation
**File naming:** `Portfolio_[LastName]_[FirstName].zip`
---
## 🚀 Quick Start (3 Steps)
### Step 1: Get the Template
- Download or clone this repository to your computer
- Open the folder in VS Code (or your preferred editor)
### Step 2: Edit `index.html`
- Replace all `[placeholders]` with your content
- Add your visualizations (examples for Vega-Lite, Tableau, and images included)
- Test by opening `index.html` in your browser
### Step 3: Submit
- Create ZIP: `Portfolio_[LastName]_[FirstName].zip`
- Include: `index.html`, all datasets, AI documentation (if applicable)
- Submit by Week 8
---
## 💡 How to Use the Template
### Adding Visualizations
The template includes **3 examples** you can copy:
1. **Vega-Lite:** Find `<script>` with `var spec1 = {...}`, replace with your spec
2. **Tableau Public:** Publish to YOUR account, get embed code, paste into HTML
3. **Python/R/Images:** Export as PNG/SVG, save in same folder, use `<img>` tag
**Add more:** Copy an entire `<article>` block and modify it
### What to Include for Each Visualization
The template has placeholders for:
- **Context & Question:** What are you exploring and why?
- **Design Decisions:** Why this chart type? What encodings? What tradeoffs?
- **Key Insights:** What did you discover?
- **Data Source:** Where is the data from? (include link)
**See `ASSIGNMENT.md` for detailed requirements and the visualization quality checklist**
---
## 🆘 Need Help?
### Get Support
**Oleh Omelchenko**
- Slack (preferred for quick questions)
- Office Hours: Wednesday 16:00-18:00, KSE Campus
- Email: o_omelchenko@kse.org.ua
---
## 📚 Additional Resources
- **`ASSIGNMENT.md`** - Complete requirements, grading rubric, and policies
- **`PUBLISHING.md`** - Optional guide for publishing to GitHub Pages (not graded)

541
assets/city-population.csv Normal file
View File

@@ -0,0 +1,541 @@
Entity,Year,"population","pop_projected"
Bangalore,1950,0.745999,
Bangalore,1955,0.939396,
Bangalore,1960,1.165978,
Bangalore,1965,1.377314,
Bangalore,1970,1.614756,
Bangalore,1975,2.110599,
Bangalore,1980,2.812428,
Bangalore,1985,3.397214,
Bangalore,1990,4.042598,
Bangalore,1995,4.754228,
Bangalore,2000,5.581263,
Bangalore,2005,6.785901,
Bangalore,2010,8.295564,
Bangalore,2015,10.14108,
Bangalore,2020,,12.326532
Bangalore,2025,,14.395443
Bangalore,2030,,16.226826
Bangalore,2035,,18.065541
Beijing,1950,1.671365,
Beijing,1955,2.364625,
Beijing,1960,3.900441,
Beijing,1965,4.582017,
Beijing,1970,4.426045,
Beijing,1975,4.827973,
Beijing,1980,5.366372,
Beijing,1985,6.017488,
Beijing,1990,6.787737,
Beijing,1995,8.355148,
Beijing,2000,10.285091,
Beijing,2005,12.991292,
Beijing,2010,16.441252,
Beijing,2015,18.421198,
Beijing,2020,,20.46261
Beijing,2025,,22.596455
Beijing,2030,,24.281913
Beijing,2035,,25.36592
Bogota,1950,0.630315,
Bogota,1955,0.894187,
Bogota,1960,1.268645,
Bogota,1965,1.779758,
Bogota,1970,2.383425,
Bogota,1975,3.040465,
Bogota,1980,3.525154,
Bogota,1985,4.086775,
Bogota,1990,4.740448,
Bogota,1995,5.488071,
Bogota,2000,6.329384,
Bogota,2005,7.299095,
Bogota,2010,8.417705,
Bogota,2015,9.707746,
Bogota,2020,,10.97836
Bogota,2025,,11.795829
Bogota,2030,,12.343364
Bogota,2035,,12.753324
Buenos Aires,1950,5.16614,
Buenos Aires,1955,5.910271,
Buenos Aires,1960,6.761837,
Buenos Aires,1965,7.548511,
Buenos Aires,1970,8.41617,
Buenos Aires,1975,9.143219,
Buenos Aires,1980,9.919781,
Buenos Aires,1985,10.523442,
Buenos Aires,1990,11.147566,
Buenos Aires,1995,11.806407,
Buenos Aires,2000,12.503871,
Buenos Aires,2005,13.32954,
Buenos Aires,2010,14.245871,
Buenos Aires,2015,14.705533,
Buenos Aires,2020,,15.153729
Buenos Aires,2025,,15.752275
Buenos Aires,2030,,16.456115
Buenos Aires,2035,,17.127741
Cairo,1950,2.493514,
Cairo,1955,3.029198,
Cairo,1960,3.68016,
Cairo,1965,4.737968,
Cairo,1970,5.584507,
Cairo,1975,6.449922,
Cairo,1980,7.348778,
Cairo,1985,8.328255,
Cairo,1990,9.892143,
Cairo,1995,11.961986,
Cairo,2000,13.625565,
Cairo,2005,15.17405,
Cairo,2010,16.899015,
Cairo,2015,18.820072,
Cairo,2020,,20.900604
Cairo,2025,,23.074225
Cairo,2030,,25.516696
Cairo,2035,,28.504351
Chongqing,1950,1.566966,
Chongqing,1955,1.913248,
Chongqing,1960,2.275158,
Chongqing,1965,2.188064,
Chongqing,1970,2.237344,
Chongqing,1975,2.544566,
Chongqing,1980,2.9614,
Chongqing,1985,3.44623,
Chongqing,1990,4.010602,
Chongqing,1995,5.615367,
Chongqing,2000,7.862976,
Chongqing,2005,9.454076,
Chongqing,2010,11.243667,
Chongqing,2015,13.372015,
Chongqing,2020,,15.872179
Chongqing,2025,,18.171198
Chongqing,2030,,19.649097
Chongqing,2035,,20.531266
Delhi,1950,1.369369,
Delhi,1955,1.781624,
Delhi,1960,2.282962,
Delhi,1965,2.845042,
Delhi,1970,3.530693,
Delhi,1975,4.436385,
Delhi,1980,5.587014,
Delhi,1985,7.225758,
Delhi,1990,9.384209,
Delhi,1995,12.138233,
Delhi,2000,15.691899,
Delhi,2005,18.69133,
Delhi,2010,21.987895,
Delhi,2015,25.865875,
Delhi,2020,,30.290936
Delhi,2025,,34.665569
Delhi,2030,,38.938697
Delhi,2035,,43.345059
Dhaka,1950,0.33576,
Dhaka,1955,0.408866,
Dhaka,1960,0.507921,
Dhaka,1965,0.82074,
Dhaka,1970,1.373718,
Dhaka,1975,2.221055,
Dhaka,1980,3.265663,
Dhaka,1985,4.660384,
Dhaka,1990,6.620697,
Dhaka,1995,8.332474,
Dhaka,2000,10.284947,
Dhaka,2005,12.330879,
Dhaka,2010,14.730537,
Dhaka,2015,17.597177,
Dhaka,2020,,21.00586
Dhaka,2025,,24.652864
Dhaka,2030,,28.07566
Dhaka,2035,,31.233651
Guangzhou,1950,1.048975,
Guangzhou,1955,1.155063,
Guangzhou,1960,1.271914,
Guangzhou,1965,1.400511,
Guangzhou,1970,1.542151,
Guangzhou,1975,1.698116,
Guangzhou,1980,1.869905,
Guangzhou,1985,2.355566,
Guangzhou,1990,3.245991,
Guangzhou,1995,5.035339,
Guangzhou,2000,7.812008,
Guangzhou,2005,9.055056,
Guangzhou,2010,10.278197,
Guangzhou,2015,11.694882,
Guangzhou,2020,,13.301532
Guangzhou,2025,,14.878691
Guangzhou,2030,,16.024165
Guangzhou,2035,,16.740973
Istanbul,1950,0.967497,
Istanbul,1955,1.248709,
Istanbul,1960,1.453353,
Istanbul,1965,2.001192,
Istanbul,1970,2.772095,
Istanbul,1975,3.600332,
Istanbul,1980,4.397037,
Istanbul,1985,5.407297,
Istanbul,1990,6.55216,
Istanbul,1995,7.665403,
Istanbul,2000,8.743868,
Istanbul,2005,10.465694,
Istanbul,2010,12.584885,
Istanbul,2015,14.126772,
Istanbul,2020,,15.190336
Istanbul,2025,,16.236703
Istanbul,2030,,17.12424
Istanbul,2035,,17.986297
Jakarta,1950,1.452,
Jakarta,1955,1.972106,
Jakarta,1960,2.67874,
Jakarta,1965,3.296964,
Jakarta,1970,3.915406,
Jakarta,1975,4.813132,
Jakarta,1980,5.984256,
Jakarta,1985,7.00903,
Jakarta,1990,8.174756,
Jakarta,1995,8.321858,
Jakarta,2000,8.389759,
Jakarta,2005,8.988406,
Jakarta,2010,9.625579,
Jakarta,2015,10.173388,
Jakarta,2020,,10.770487
Jakarta,2025,,11.634078
Jakarta,2030,,12.686756
Jakarta,2035,,13.688321
Karachi,1950,1.05538,
Karachi,1955,1.419491,
Karachi,1960,1.853325,
Karachi,1965,2.405037,
Karachi,1970,3.118723,
Karachi,1975,3.989191,
Karachi,1980,5.047815,
Karachi,1985,6.032582,
Karachi,1990,7.147064,
Karachi,1995,8.467439,
Karachi,2000,9.825295,
Karachi,2005,11.131559,
Karachi,2010,12.611924,
Karachi,2015,14.28916,
Karachi,2020,,16.093786
Karachi,2025,,18.076794
Karachi,2030,,20.431848
Karachi,2035,,23.128137
Kinshasa,1950,0.201905,
Kinshasa,1955,0.292398,
Kinshasa,1960,0.442853,
Kinshasa,1965,0.717018,
Kinshasa,1970,1.069714,
Kinshasa,1975,1.48182,
Kinshasa,1980,2.052874,
Kinshasa,1985,2.811896,
Kinshasa,1990,3.683274,
Kinshasa,1995,4.824684,
Kinshasa,2000,6.140419,
Kinshasa,2005,7.589069,
Kinshasa,2010,9.381673,
Kinshasa,2015,11.597706,
Kinshasa,2020,,14.342439
Kinshasa,2025,,17.778474
Kinshasa,2030,,21.914342
Kinshasa,2035,,26.681825
Kolkata,1950,4.604143,
Kolkata,1955,5.219086,
Kolkata,1960,5.91021,
Kolkata,1965,6.589384,
Kolkata,1970,7.329372,
Kolkata,1975,8.165629,
Kolkata,1980,9.100166,
Kolkata,1985,10.003665,
Kolkata,1990,10.974177,
Kolkata,1995,11.992194,
Kolkata,2000,13.097153,
Kolkata,2005,13.595152,
Kolkata,2010,14.002798,
Kolkata,2015,14.42267,
Kolkata,2020,,14.850066
Kolkata,2025,,15.845219
Kolkata,2030,,17.583604
Kolkata,2035,,19.56417
Lagos,1950,0.325218,
Lagos,1955,0.46846,
Lagos,1960,0.762418,
Lagos,1965,1.135439,
Lagos,1970,1.413528,
Lagos,1975,1.889802,
Lagos,1980,2.572218,
Lagos,1985,3.500464,
Lagos,1990,4.764093,
Lagos,1995,5.98268,
Lagos,2000,7.280706,
Lagos,2005,8.859399,
Lagos,2010,10.441182,
Lagos,2015,12.239206,
Lagos,2020,,14.368332
Lagos,2025,,17.156393
Lagos,2030,,20.600156
Lagos,2035,,24.418768
Lahore,1950,0.835769,
Lahore,1955,1.021679,
Lahore,1960,1.264277,
Lahore,1965,1.574981,
Lahore,1970,1.963951,
Lahore,1975,2.398576,
Lahore,1980,2.881596,
Lahore,1985,3.387873,
Lahore,1990,3.970161,
Lahore,1995,4.652529,
Lahore,2000,5.576372,
Lahore,2005,6.856969,
Lahore,2010,8.432132,
Lahore,2015,10.369137,
Lahore,2020,,12.642423
Lahore,2025,,14.825828
Lahore,2030,,16.883085
Lahore,2035,,19.116605
Los Angeles,1950,4.045514,
Los Angeles,1955,5.154301,
Los Angeles,1960,6.529638,
Los Angeles,1965,7.407634,
Los Angeles,1970,8.377685,
Los Angeles,1975,8.925518,
Los Angeles,1980,9.511568,
Los Angeles,1985,10.181172,
Los Angeles,1990,10.883429,
Los Angeles,1995,11.33889,
Los Angeles,2000,11.798345,
Los Angeles,2005,11.977857,
Los Angeles,2010,12.160151,
Los Angeles,2015,12.345219,
Los Angeles,2020,,12.446597
Los Angeles,2025,,12.677559
Los Angeles,2030,,13.209244
Los Angeles,2035,,13.778153
Manila,1950,1.543666,
Manila,1955,1.871605,
Manila,1960,2.273734,
Manila,1965,2.828883,
Manila,1970,3.534309,
Manila,1975,4.999303,
Manila,1980,5.954719,
Manila,1985,6.88792,
Manila,1990,7.972799,
Manila,1995,9.401255,
Manila,2000,9.957962,
Manila,2005,10.750752,
Manila,2010,11.887189,
Manila,2015,12.860058,
Manila,2020,,13.923452
Manila,2025,,15.230559
Manila,2030,,16.84134
Manila,2035,,18.649422
Mexico City,1950,3.365081,
Mexico City,1955,4.293878,
Mexico City,1960,5.479184,
Mexico City,1965,6.969157,
Mexico City,1970,8.830947,
Mexico City,1975,10.73386,
Mexico City,1980,13.02762,
Mexico City,1985,14.278216,
Mexico City,1990,15.642318,
Mexico City,1995,17.017469,
Mexico City,2000,18.457027,
Mexico City,2005,19.276065,
Mexico City,2010,20.136681,
Mexico City,2015,21.339781,
Mexico City,2020,,21.782378
Mexico City,2025,,22.752414
Mexico City,2030,,24.110599
Mexico City,2035,,25.414624
Moscow,1950,5.356392,
Moscow,1955,5.748746,
Moscow,1960,6.169961,
Moscow,1965,6.62178,
Moscow,1970,7.106457,
Moscow,1975,7.622703,
Moscow,1980,8.136141,
Moscow,1985,8.57992,
Moscow,1990,8.986631,
Moscow,1995,9.200994,
Moscow,2000,10.004523,
Moscow,2005,10.751428,
Moscow,2010,11.461264,
Moscow,2015,12.049135,
Moscow,2020,,12.537954
Moscow,2025,,12.737356
Moscow,2030,,12.795712
Moscow,2035,,12.822748
Mumbai,1950,3.088811,
Mumbai,1955,3.72621,
Mumbai,1960,4.414904,
Mumbai,1965,5.3143,
Mumbai,1970,6.412876,
Mumbai,1975,7.685346,
Mumbai,1980,9.199543,
Mumbai,1985,10.68553,
Mumbai,1990,12.35509,
Mumbai,1995,14.135363,
Mumbai,2000,16.146527,
Mumbai,2005,17.257072,
Mumbai,2010,18.257413,
Mumbai,2015,19.315737,
Mumbai,2020,,20.411274
Mumbai,2025,,22.088953
Mumbai,2030,,24.57245
Mumbai,2035,,27.342819
New York,1950,12.338471,
New York,1955,13.219362,
New York,1960,14.163521,
New York,1965,15.176758,
New York,1970,16.19118,
New York,1975,15.880271,
New York,1980,15.601401,
New York,1985,15.826788,
New York,1990,16.085599,
New York,1995,16.94277,
New York,2000,17.813371,
New York,2005,18.087174,
New York,2010,18.365262,
New York,2015,18.647626,
New York,2020,,18.803552
New York,2025,,19.154024
New York,2030,,19.957605
New York,2035,,20.81717
Osaka,1950,7.005284,
Osaka,1955,8.622976,
Osaka,1960,10.614841,
Osaka,1965,13.065322,
Osaka,1970,15.27151,
Osaka,1975,16.298124,
Osaka,1980,17.027547,
Osaka,1985,17.582632,
Osaka,1990,18.388783,
Osaka,1995,18.939588,
Osaka,2000,18.660022,
Osaka,2005,18.762099,
Osaka,2010,19.312646,
Osaka,2015,19.304722,
Osaka,2020,,19.16534
Osaka,2025,,18.921632
Osaka,2030,,18.658055
Osaka,2035,,18.345611
Paris,1950,6.283018,
Paris,1955,6.796437,
Paris,1960,7.410735,
Paris,1965,7.855185,
Paris,1970,8.208121,
Paris,1975,8.557844,
Paris,1980,8.669349,
Paris,1985,8.956222,
Paris,1990,9.330327,
Paris,1995,9.510103,
Paris,2000,9.736538,
Paris,2005,10.091795,
Paris,2010,10.460118,
Paris,2015,10.733502,
Paris,2020,,11.01723
Paris,2025,,11.346802
Paris,2030,,11.709788
Paris,2035,,12.064575
Rio de Janeiro,1950,3.026195,
Rio de Janeiro,1955,3.687344,
Rio de Janeiro,1960,4.493182,
Rio de Janeiro,1965,5.522674,
Rio de Janeiro,1970,6.790519,
Rio de Janeiro,1975,7.733429,
Rio de Janeiro,1980,8.78387,
Rio de Janeiro,1985,9.241709,
Rio de Janeiro,1990,9.697487,
Rio de Janeiro,1995,10.431518,
Rio de Janeiro,2000,11.306768,
Rio de Janeiro,2005,11.831807,
Rio de Janeiro,2010,12.373884,
Rio de Janeiro,2015,12.940796,
Rio de Janeiro,2020,,13.458075
Rio de Janeiro,2025,,13.923245
Rio de Janeiro,2030,,14.408259
Rio de Janeiro,2035,,14.81018
Sao Paulo,1950,2.334038,
Sao Paulo,1955,3.043828,
Sao Paulo,1960,3.969759,
Sao Paulo,1965,5.49415,
Sao Paulo,1970,7.62049,
Sao Paulo,1975,9.614016,
Sao Paulo,1980,12.089454,
Sao Paulo,1985,13.394815,
Sao Paulo,1990,14.77584,
Sao Paulo,1995,15.913473,
Sao Paulo,2000,17.014078,
Sao Paulo,2005,18.288134,
Sao Paulo,2010,19.659808,
Sao Paulo,2015,20.883046,
Sao Paulo,2020,,22.043028
Sao Paulo,2025,,22.990007
Sao Paulo,2030,,23.824223
Sao Paulo,2035,,24.490136
Shanghai,1950,4.288091,
Shanghai,1955,5.712858,
Shanghai,1960,6.865312,
Shanghai,1965,6.428131,
Shanghai,1970,6.052468,
Shanghai,1975,5.658129,
Shanghai,1980,5.927898,
Shanghai,1985,7.09628,
Shanghai,1990,8.605812,
Shanghai,1995,11.072063,
Shanghai,2000,14.246541,
Shanghai,2005,17.055788,
Shanghai,2010,20.314309,
Shanghai,2015,23.482181,
Shanghai,2020,,27.058479
Shanghai,2025,,30.48214
Shanghai,2030,,32.869265
Shanghai,2035,,34.341242
Shenzhen,1950,0.003148,
Shenzhen,1955,0.005112,
Shenzhen,1960,0.008302,
Shenzhen,1965,0.01348,
Shenzhen,1970,0.02189,
Shenzhen,1975,0.035547,
Shenzhen,1980,0.058983,
Shenzhen,1985,0.193113,
Shenzhen,1990,0.875,
Shenzhen,1995,2.393747,
Shenzhen,2000,6.550414,
Shenzhen,2005,8.409066,
Shenzhen,2010,10.222916,
Shenzhen,2015,11.275391,
Shenzhen,2020,,12.35682
Shenzhen,2025,,13.545445
Shenzhen,2030,,14.537252
Shenzhen,2035,,15.185481
Tianjin,1950,2.467096,
Tianjin,1955,2.760676,
Tianjin,1960,2.935185,
Tianjin,1965,3.12062,
Tianjin,1970,3.317826,
Tianjin,1975,3.527495,
Tianjin,1980,3.750476,
Tianjin,1985,4.097324,
Tianjin,1990,4.558206,
Tianjin,1995,5.643951,
Tianjin,2000,6.988727,
Tianjin,2005,8.430065,
Tianjin,2010,10.150076,
Tianjin,2015,12.516041,
Tianjin,2020,,13.589078
Tianjin,2025,,14.70408
Tianjin,2030,,15.74524
Tianjin,2035,,16.445898
Tokyo,1950,11.274641,
Tokyo,1955,13.712679,
Tokyo,1960,16.678821,
Tokyo,1965,20.284371,
Tokyo,1970,23.297503,
Tokyo,1975,26.614733,
Tokyo,1980,28.548512,
Tokyo,1985,30.303794,
Tokyo,1990,32.530003,
Tokyo,1995,33.586573,
Tokyo,2000,34.449908,
Tokyo,2005,35.621544,
Tokyo,2010,36.859626,
Tokyo,2015,37.256109,
Tokyo,2020,,37.393129
Tokyo,2025,,37.036204
Tokyo,2030,,36.573799
Tokyo,2035,,36.01403
1 Entity Year population pop_projected
2 Bangalore 1950 0.745999
3 Bangalore 1955 0.939396
4 Bangalore 1960 1.165978
5 Bangalore 1965 1.377314
6 Bangalore 1970 1.614756
7 Bangalore 1975 2.110599
8 Bangalore 1980 2.812428
9 Bangalore 1985 3.397214
10 Bangalore 1990 4.042598
11 Bangalore 1995 4.754228
12 Bangalore 2000 5.581263
13 Bangalore 2005 6.785901
14 Bangalore 2010 8.295564
15 Bangalore 2015 10.14108
16 Bangalore 2020 12.326532
17 Bangalore 2025 14.395443
18 Bangalore 2030 16.226826
19 Bangalore 2035 18.065541
20 Beijing 1950 1.671365
21 Beijing 1955 2.364625
22 Beijing 1960 3.900441
23 Beijing 1965 4.582017
24 Beijing 1970 4.426045
25 Beijing 1975 4.827973
26 Beijing 1980 5.366372
27 Beijing 1985 6.017488
28 Beijing 1990 6.787737
29 Beijing 1995 8.355148
30 Beijing 2000 10.285091
31 Beijing 2005 12.991292
32 Beijing 2010 16.441252
33 Beijing 2015 18.421198
34 Beijing 2020 20.46261
35 Beijing 2025 22.596455
36 Beijing 2030 24.281913
37 Beijing 2035 25.36592
38 Bogota 1950 0.630315
39 Bogota 1955 0.894187
40 Bogota 1960 1.268645
41 Bogota 1965 1.779758
42 Bogota 1970 2.383425
43 Bogota 1975 3.040465
44 Bogota 1980 3.525154
45 Bogota 1985 4.086775
46 Bogota 1990 4.740448
47 Bogota 1995 5.488071
48 Bogota 2000 6.329384
49 Bogota 2005 7.299095
50 Bogota 2010 8.417705
51 Bogota 2015 9.707746
52 Bogota 2020 10.97836
53 Bogota 2025 11.795829
54 Bogota 2030 12.343364
55 Bogota 2035 12.753324
56 Buenos Aires 1950 5.16614
57 Buenos Aires 1955 5.910271
58 Buenos Aires 1960 6.761837
59 Buenos Aires 1965 7.548511
60 Buenos Aires 1970 8.41617
61 Buenos Aires 1975 9.143219
62 Buenos Aires 1980 9.919781
63 Buenos Aires 1985 10.523442
64 Buenos Aires 1990 11.147566
65 Buenos Aires 1995 11.806407
66 Buenos Aires 2000 12.503871
67 Buenos Aires 2005 13.32954
68 Buenos Aires 2010 14.245871
69 Buenos Aires 2015 14.705533
70 Buenos Aires 2020 15.153729
71 Buenos Aires 2025 15.752275
72 Buenos Aires 2030 16.456115
73 Buenos Aires 2035 17.127741
74 Cairo 1950 2.493514
75 Cairo 1955 3.029198
76 Cairo 1960 3.68016
77 Cairo 1965 4.737968
78 Cairo 1970 5.584507
79 Cairo 1975 6.449922
80 Cairo 1980 7.348778
81 Cairo 1985 8.328255
82 Cairo 1990 9.892143
83 Cairo 1995 11.961986
84 Cairo 2000 13.625565
85 Cairo 2005 15.17405
86 Cairo 2010 16.899015
87 Cairo 2015 18.820072
88 Cairo 2020 20.900604
89 Cairo 2025 23.074225
90 Cairo 2030 25.516696
91 Cairo 2035 28.504351
92 Chongqing 1950 1.566966
93 Chongqing 1955 1.913248
94 Chongqing 1960 2.275158
95 Chongqing 1965 2.188064
96 Chongqing 1970 2.237344
97 Chongqing 1975 2.544566
98 Chongqing 1980 2.9614
99 Chongqing 1985 3.44623
100 Chongqing 1990 4.010602
101 Chongqing 1995 5.615367
102 Chongqing 2000 7.862976
103 Chongqing 2005 9.454076
104 Chongqing 2010 11.243667
105 Chongqing 2015 13.372015
106 Chongqing 2020 15.872179
107 Chongqing 2025 18.171198
108 Chongqing 2030 19.649097
109 Chongqing 2035 20.531266
110 Delhi 1950 1.369369
111 Delhi 1955 1.781624
112 Delhi 1960 2.282962
113 Delhi 1965 2.845042
114 Delhi 1970 3.530693
115 Delhi 1975 4.436385
116 Delhi 1980 5.587014
117 Delhi 1985 7.225758
118 Delhi 1990 9.384209
119 Delhi 1995 12.138233
120 Delhi 2000 15.691899
121 Delhi 2005 18.69133
122 Delhi 2010 21.987895
123 Delhi 2015 25.865875
124 Delhi 2020 30.290936
125 Delhi 2025 34.665569
126 Delhi 2030 38.938697
127 Delhi 2035 43.345059
128 Dhaka 1950 0.33576
129 Dhaka 1955 0.408866
130 Dhaka 1960 0.507921
131 Dhaka 1965 0.82074
132 Dhaka 1970 1.373718
133 Dhaka 1975 2.221055
134 Dhaka 1980 3.265663
135 Dhaka 1985 4.660384
136 Dhaka 1990 6.620697
137 Dhaka 1995 8.332474
138 Dhaka 2000 10.284947
139 Dhaka 2005 12.330879
140 Dhaka 2010 14.730537
141 Dhaka 2015 17.597177
142 Dhaka 2020 21.00586
143 Dhaka 2025 24.652864
144 Dhaka 2030 28.07566
145 Dhaka 2035 31.233651
146 Guangzhou 1950 1.048975
147 Guangzhou 1955 1.155063
148 Guangzhou 1960 1.271914
149 Guangzhou 1965 1.400511
150 Guangzhou 1970 1.542151
151 Guangzhou 1975 1.698116
152 Guangzhou 1980 1.869905
153 Guangzhou 1985 2.355566
154 Guangzhou 1990 3.245991
155 Guangzhou 1995 5.035339
156 Guangzhou 2000 7.812008
157 Guangzhou 2005 9.055056
158 Guangzhou 2010 10.278197
159 Guangzhou 2015 11.694882
160 Guangzhou 2020 13.301532
161 Guangzhou 2025 14.878691
162 Guangzhou 2030 16.024165
163 Guangzhou 2035 16.740973
164 Istanbul 1950 0.967497
165 Istanbul 1955 1.248709
166 Istanbul 1960 1.453353
167 Istanbul 1965 2.001192
168 Istanbul 1970 2.772095
169 Istanbul 1975 3.600332
170 Istanbul 1980 4.397037
171 Istanbul 1985 5.407297
172 Istanbul 1990 6.55216
173 Istanbul 1995 7.665403
174 Istanbul 2000 8.743868
175 Istanbul 2005 10.465694
176 Istanbul 2010 12.584885
177 Istanbul 2015 14.126772
178 Istanbul 2020 15.190336
179 Istanbul 2025 16.236703
180 Istanbul 2030 17.12424
181 Istanbul 2035 17.986297
182 Jakarta 1950 1.452
183 Jakarta 1955 1.972106
184 Jakarta 1960 2.67874
185 Jakarta 1965 3.296964
186 Jakarta 1970 3.915406
187 Jakarta 1975 4.813132
188 Jakarta 1980 5.984256
189 Jakarta 1985 7.00903
190 Jakarta 1990 8.174756
191 Jakarta 1995 8.321858
192 Jakarta 2000 8.389759
193 Jakarta 2005 8.988406
194 Jakarta 2010 9.625579
195 Jakarta 2015 10.173388
196 Jakarta 2020 10.770487
197 Jakarta 2025 11.634078
198 Jakarta 2030 12.686756
199 Jakarta 2035 13.688321
200 Karachi 1950 1.05538
201 Karachi 1955 1.419491
202 Karachi 1960 1.853325
203 Karachi 1965 2.405037
204 Karachi 1970 3.118723
205 Karachi 1975 3.989191
206 Karachi 1980 5.047815
207 Karachi 1985 6.032582
208 Karachi 1990 7.147064
209 Karachi 1995 8.467439
210 Karachi 2000 9.825295
211 Karachi 2005 11.131559
212 Karachi 2010 12.611924
213 Karachi 2015 14.28916
214 Karachi 2020 16.093786
215 Karachi 2025 18.076794
216 Karachi 2030 20.431848
217 Karachi 2035 23.128137
218 Kinshasa 1950 0.201905
219 Kinshasa 1955 0.292398
220 Kinshasa 1960 0.442853
221 Kinshasa 1965 0.717018
222 Kinshasa 1970 1.069714
223 Kinshasa 1975 1.48182
224 Kinshasa 1980 2.052874
225 Kinshasa 1985 2.811896
226 Kinshasa 1990 3.683274
227 Kinshasa 1995 4.824684
228 Kinshasa 2000 6.140419
229 Kinshasa 2005 7.589069
230 Kinshasa 2010 9.381673
231 Kinshasa 2015 11.597706
232 Kinshasa 2020 14.342439
233 Kinshasa 2025 17.778474
234 Kinshasa 2030 21.914342
235 Kinshasa 2035 26.681825
236 Kolkata 1950 4.604143
237 Kolkata 1955 5.219086
238 Kolkata 1960 5.91021
239 Kolkata 1965 6.589384
240 Kolkata 1970 7.329372
241 Kolkata 1975 8.165629
242 Kolkata 1980 9.100166
243 Kolkata 1985 10.003665
244 Kolkata 1990 10.974177
245 Kolkata 1995 11.992194
246 Kolkata 2000 13.097153
247 Kolkata 2005 13.595152
248 Kolkata 2010 14.002798
249 Kolkata 2015 14.42267
250 Kolkata 2020 14.850066
251 Kolkata 2025 15.845219
252 Kolkata 2030 17.583604
253 Kolkata 2035 19.56417
254 Lagos 1950 0.325218
255 Lagos 1955 0.46846
256 Lagos 1960 0.762418
257 Lagos 1965 1.135439
258 Lagos 1970 1.413528
259 Lagos 1975 1.889802
260 Lagos 1980 2.572218
261 Lagos 1985 3.500464
262 Lagos 1990 4.764093
263 Lagos 1995 5.98268
264 Lagos 2000 7.280706
265 Lagos 2005 8.859399
266 Lagos 2010 10.441182
267 Lagos 2015 12.239206
268 Lagos 2020 14.368332
269 Lagos 2025 17.156393
270 Lagos 2030 20.600156
271 Lagos 2035 24.418768
272 Lahore 1950 0.835769
273 Lahore 1955 1.021679
274 Lahore 1960 1.264277
275 Lahore 1965 1.574981
276 Lahore 1970 1.963951
277 Lahore 1975 2.398576
278 Lahore 1980 2.881596
279 Lahore 1985 3.387873
280 Lahore 1990 3.970161
281 Lahore 1995 4.652529
282 Lahore 2000 5.576372
283 Lahore 2005 6.856969
284 Lahore 2010 8.432132
285 Lahore 2015 10.369137
286 Lahore 2020 12.642423
287 Lahore 2025 14.825828
288 Lahore 2030 16.883085
289 Lahore 2035 19.116605
290 Los Angeles 1950 4.045514
291 Los Angeles 1955 5.154301
292 Los Angeles 1960 6.529638
293 Los Angeles 1965 7.407634
294 Los Angeles 1970 8.377685
295 Los Angeles 1975 8.925518
296 Los Angeles 1980 9.511568
297 Los Angeles 1985 10.181172
298 Los Angeles 1990 10.883429
299 Los Angeles 1995 11.33889
300 Los Angeles 2000 11.798345
301 Los Angeles 2005 11.977857
302 Los Angeles 2010 12.160151
303 Los Angeles 2015 12.345219
304 Los Angeles 2020 12.446597
305 Los Angeles 2025 12.677559
306 Los Angeles 2030 13.209244
307 Los Angeles 2035 13.778153
308 Manila 1950 1.543666
309 Manila 1955 1.871605
310 Manila 1960 2.273734
311 Manila 1965 2.828883
312 Manila 1970 3.534309
313 Manila 1975 4.999303
314 Manila 1980 5.954719
315 Manila 1985 6.88792
316 Manila 1990 7.972799
317 Manila 1995 9.401255
318 Manila 2000 9.957962
319 Manila 2005 10.750752
320 Manila 2010 11.887189
321 Manila 2015 12.860058
322 Manila 2020 13.923452
323 Manila 2025 15.230559
324 Manila 2030 16.84134
325 Manila 2035 18.649422
326 Mexico City 1950 3.365081
327 Mexico City 1955 4.293878
328 Mexico City 1960 5.479184
329 Mexico City 1965 6.969157
330 Mexico City 1970 8.830947
331 Mexico City 1975 10.73386
332 Mexico City 1980 13.02762
333 Mexico City 1985 14.278216
334 Mexico City 1990 15.642318
335 Mexico City 1995 17.017469
336 Mexico City 2000 18.457027
337 Mexico City 2005 19.276065
338 Mexico City 2010 20.136681
339 Mexico City 2015 21.339781
340 Mexico City 2020 21.782378
341 Mexico City 2025 22.752414
342 Mexico City 2030 24.110599
343 Mexico City 2035 25.414624
344 Moscow 1950 5.356392
345 Moscow 1955 5.748746
346 Moscow 1960 6.169961
347 Moscow 1965 6.62178
348 Moscow 1970 7.106457
349 Moscow 1975 7.622703
350 Moscow 1980 8.136141
351 Moscow 1985 8.57992
352 Moscow 1990 8.986631
353 Moscow 1995 9.200994
354 Moscow 2000 10.004523
355 Moscow 2005 10.751428
356 Moscow 2010 11.461264
357 Moscow 2015 12.049135
358 Moscow 2020 12.537954
359 Moscow 2025 12.737356
360 Moscow 2030 12.795712
361 Moscow 2035 12.822748
362 Mumbai 1950 3.088811
363 Mumbai 1955 3.72621
364 Mumbai 1960 4.414904
365 Mumbai 1965 5.3143
366 Mumbai 1970 6.412876
367 Mumbai 1975 7.685346
368 Mumbai 1980 9.199543
369 Mumbai 1985 10.68553
370 Mumbai 1990 12.35509
371 Mumbai 1995 14.135363
372 Mumbai 2000 16.146527
373 Mumbai 2005 17.257072
374 Mumbai 2010 18.257413
375 Mumbai 2015 19.315737
376 Mumbai 2020 20.411274
377 Mumbai 2025 22.088953
378 Mumbai 2030 24.57245
379 Mumbai 2035 27.342819
380 New York 1950 12.338471
381 New York 1955 13.219362
382 New York 1960 14.163521
383 New York 1965 15.176758
384 New York 1970 16.19118
385 New York 1975 15.880271
386 New York 1980 15.601401
387 New York 1985 15.826788
388 New York 1990 16.085599
389 New York 1995 16.94277
390 New York 2000 17.813371
391 New York 2005 18.087174
392 New York 2010 18.365262
393 New York 2015 18.647626
394 New York 2020 18.803552
395 New York 2025 19.154024
396 New York 2030 19.957605
397 New York 2035 20.81717
398 Osaka 1950 7.005284
399 Osaka 1955 8.622976
400 Osaka 1960 10.614841
401 Osaka 1965 13.065322
402 Osaka 1970 15.27151
403 Osaka 1975 16.298124
404 Osaka 1980 17.027547
405 Osaka 1985 17.582632
406 Osaka 1990 18.388783
407 Osaka 1995 18.939588
408 Osaka 2000 18.660022
409 Osaka 2005 18.762099
410 Osaka 2010 19.312646
411 Osaka 2015 19.304722
412 Osaka 2020 19.16534
413 Osaka 2025 18.921632
414 Osaka 2030 18.658055
415 Osaka 2035 18.345611
416 Paris 1950 6.283018
417 Paris 1955 6.796437
418 Paris 1960 7.410735
419 Paris 1965 7.855185
420 Paris 1970 8.208121
421 Paris 1975 8.557844
422 Paris 1980 8.669349
423 Paris 1985 8.956222
424 Paris 1990 9.330327
425 Paris 1995 9.510103
426 Paris 2000 9.736538
427 Paris 2005 10.091795
428 Paris 2010 10.460118
429 Paris 2015 10.733502
430 Paris 2020 11.01723
431 Paris 2025 11.346802
432 Paris 2030 11.709788
433 Paris 2035 12.064575
434 Rio de Janeiro 1950 3.026195
435 Rio de Janeiro 1955 3.687344
436 Rio de Janeiro 1960 4.493182
437 Rio de Janeiro 1965 5.522674
438 Rio de Janeiro 1970 6.790519
439 Rio de Janeiro 1975 7.733429
440 Rio de Janeiro 1980 8.78387
441 Rio de Janeiro 1985 9.241709
442 Rio de Janeiro 1990 9.697487
443 Rio de Janeiro 1995 10.431518
444 Rio de Janeiro 2000 11.306768
445 Rio de Janeiro 2005 11.831807
446 Rio de Janeiro 2010 12.373884
447 Rio de Janeiro 2015 12.940796
448 Rio de Janeiro 2020 13.458075
449 Rio de Janeiro 2025 13.923245
450 Rio de Janeiro 2030 14.408259
451 Rio de Janeiro 2035 14.81018
452 Sao Paulo 1950 2.334038
453 Sao Paulo 1955 3.043828
454 Sao Paulo 1960 3.969759
455 Sao Paulo 1965 5.49415
456 Sao Paulo 1970 7.62049
457 Sao Paulo 1975 9.614016
458 Sao Paulo 1980 12.089454
459 Sao Paulo 1985 13.394815
460 Sao Paulo 1990 14.77584
461 Sao Paulo 1995 15.913473
462 Sao Paulo 2000 17.014078
463 Sao Paulo 2005 18.288134
464 Sao Paulo 2010 19.659808
465 Sao Paulo 2015 20.883046
466 Sao Paulo 2020 22.043028
467 Sao Paulo 2025 22.990007
468 Sao Paulo 2030 23.824223
469 Sao Paulo 2035 24.490136
470 Shanghai 1950 4.288091
471 Shanghai 1955 5.712858
472 Shanghai 1960 6.865312
473 Shanghai 1965 6.428131
474 Shanghai 1970 6.052468
475 Shanghai 1975 5.658129
476 Shanghai 1980 5.927898
477 Shanghai 1985 7.09628
478 Shanghai 1990 8.605812
479 Shanghai 1995 11.072063
480 Shanghai 2000 14.246541
481 Shanghai 2005 17.055788
482 Shanghai 2010 20.314309
483 Shanghai 2015 23.482181
484 Shanghai 2020 27.058479
485 Shanghai 2025 30.48214
486 Shanghai 2030 32.869265
487 Shanghai 2035 34.341242
488 Shenzhen 1950 0.003148
489 Shenzhen 1955 0.005112
490 Shenzhen 1960 0.008302
491 Shenzhen 1965 0.01348
492 Shenzhen 1970 0.02189
493 Shenzhen 1975 0.035547
494 Shenzhen 1980 0.058983
495 Shenzhen 1985 0.193113
496 Shenzhen 1990 0.875
497 Shenzhen 1995 2.393747
498 Shenzhen 2000 6.550414
499 Shenzhen 2005 8.409066
500 Shenzhen 2010 10.222916
501 Shenzhen 2015 11.275391
502 Shenzhen 2020 12.35682
503 Shenzhen 2025 13.545445
504 Shenzhen 2030 14.537252
505 Shenzhen 2035 15.185481
506 Tianjin 1950 2.467096
507 Tianjin 1955 2.760676
508 Tianjin 1960 2.935185
509 Tianjin 1965 3.12062
510 Tianjin 1970 3.317826
511 Tianjin 1975 3.527495
512 Tianjin 1980 3.750476
513 Tianjin 1985 4.097324
514 Tianjin 1990 4.558206
515 Tianjin 1995 5.643951
516 Tianjin 2000 6.988727
517 Tianjin 2005 8.430065
518 Tianjin 2010 10.150076
519 Tianjin 2015 12.516041
520 Tianjin 2020 13.589078
521 Tianjin 2025 14.70408
522 Tianjin 2030 15.74524
523 Tianjin 2035 16.445898
524 Tokyo 1950 11.274641
525 Tokyo 1955 13.712679
526 Tokyo 1960 16.678821
527 Tokyo 1965 20.284371
528 Tokyo 1970 23.297503
529 Tokyo 1975 26.614733
530 Tokyo 1980 28.548512
531 Tokyo 1985 30.303794
532 Tokyo 1990 32.530003
533 Tokyo 1995 33.586573
534 Tokyo 2000 34.449908
535 Tokyo 2005 35.621544
536 Tokyo 2010 36.859626
537 Tokyo 2015 37.256109
538 Tokyo 2020 37.393129
539 Tokyo 2025 37.036204
540 Tokyo 2030 36.573799
541 Tokyo 2035 36.01403

403
index.html Normal file
View File

@@ -0,0 +1,403 @@
<!DOCTYPE html>
<html lang="en" data-theme="light">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Data Visualization Portfolio - [Your Name]</title>
<!-- Pico.css for clean, minimal styling -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@picocss/pico@2/css/pico.min.css">
<!-- Vega-Lite library for interactive visualizations -->
<script src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
<style>
/* KSE Brand: Override Pico.css with official colors */
:root {
--pico-primary: rgb(0, 57, 100); /* KSE Dark Midnight Blue */
--pico-primary-hover: rgb(0, 77, 130);
}
/* KSE Typography */
body { line-height: 1.3; }
h1, h2, h3, h4, h5, h6 { line-height: 1.15; }
/* Visualization containers */
article > div { width: 100%; min-height: 400px; }
</style>
</head>
<body>
<main class="container">
<!-- ============================================
GETTING STARTED - READ THIS FIRST!
============================================
HOW TO USE THIS TEMPLATE:
1. Replace all [placeholder text] in square brackets with your content
2. Copy visualization sections to add more (you need minimum 5)
3. Test by opening this file in your browser
4. Delete instructional comments before submitting
📖 FOR COMPLETE REQUIREMENTS: See ASSIGNMENT.md
Quick checklist:
- Replace [Your Name], video link, and introduction theme
- Add 5+ visualizations with context, design decisions, insights, sources
- Include unified theme connecting all visualizations
- Embed your 5-7 minute video presentation link
============================================ -->
<!-- ============================================
HEADER SECTION - Replace with your information
============================================ -->
<hgroup>
<h1>[Your Full Name]</h1>
<p>Data Visualization Portfolio</p>
<p>Principles of Data Visualization | KSE | Fall 2025</p>
</hgroup>
<!-- ============================================
VIDEO PRESENTATION - Add your video link
Required: 5-7 minutes, covers theme + key visualizations
See ASSIGNMENT.md for detailed video requirements
============================================ -->
<article>
<header>
<h2>📹 Video Presentation</h2>
</header>
<p>
<strong>Watch my portfolio walkthrough (5-7 minutes):</strong><br>
<a href="[YOUR VIDEO LINK HERE]" target="_blank" role="button">
▶️ View Video Presentation
</a>
</p>
<p>
<small>
<em>Note: If using Google Drive, make sure to enable external access to your video!</em>
</small>
</p>
</article>
<!-- ============================================
INTRODUCTION - Explain your unified THEME (3-5 sentences)
Your theme should connect all visualizations around a common
question or domain. See ASSIGNMENT.md for examples.
============================================ -->
<article>
<header>
<h2>Introduction</h2>
</header>
<p>
[Write your portfolio theme here (3-5 sentences). Explain what unifying theme connects your visualizations.
What overarching question are you exploring? Why did you choose
this topic? How do your 5+ visualizations work together to tell
a complete story?]
</p>
</article>
<!-- ============================================
VISUALIZATION 1: VEGA-LITE EXAMPLE
Copy this <article> block to add more visualizations.
For other viz types, see examples below (Tableau, images).
See ASSIGNMENT.md for quality checklist requirements.
============================================ -->
<article>
<header>
<h2>1. [Descriptive Title of Your Visualization]</h2>
</header>
<!-- CONTEXT & QUESTION (1-2 sentences) -->
<h3>Context & Question</h3>
<p>
[What analytical question does this address? Why is it important?]
</p>
<!-- DESIGN DECISIONS (2-3 sentences) -->
<h3>Design Decisions</h3>
<p>
[Chart type rationale, visual encodings, alternatives considered, tradeoffs]
</p>
<!-- THE VISUALIZATION -->
<div id="vis1"></div>
<script type="text/javascript">
/* ==========================================
VEGA-LITE SPECIFICATION
Replace the spec below with your Vega-Lite JSON.
Set "width": "container" and "height": 400
For CSV data: "data": {"url": "your-file.csv"}
(Include CSV file in your ZIP!)
========================================== */
var spec1 = {
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"description": "city population",
"width": "container",
"height": 400,
"data": {
// OPTION 1: Inline data (small datasets)
// "values": [
// { "category": "A", "value": 28 },
// { "category": "B", "value": 55 },
// { "category": "C", "value": 43 },
// { "category": "D", "value": 91 },
// { "category": "E", "value": 81 }
// ]
// OPTION 2: External file (larger datasets)
"url": "assets/city-population.csv"
},
"mark": "line",
"encoding": {
"x": {
"field": "Year",
"type": "ordinal",
"axis": { "title": "Year" }
},
"y": {
"field": "population",
"type": "quantitative",
"axis": { "title": "Population" }
},
"color": {
"field": "Entity"
}
}
};
// This line embeds the visualization - don't change this
vegaEmbed('#vis1', spec1, { actions: false });
</script>
<!-- KEY INSIGHTS (2-3 sentences) -->
<h3>Key Insights</h3>
<p>
[Patterns, trends, outliers discovered. What viewers should take away.]
</p>
<!-- DATA SOURCE -->
<footer>
<strong>Data Source:</strong>
[Dataset name, organization, year. Include URL if available]
</footer>
</article>
<!-- ============================================
VISUALIZATION 2: TABLEAU PUBLIC EXAMPLE
Publish to YOUR Tableau Public account (required).
Get embed code and paste below.
============================================ -->
<article>
<header>
<h2>2. [Title of Your Second Visualization]</h2>
</header>
<h3>Context & Question</h3>
<p>
[What question does this visualization address?]
</p>
<h3>Design Decisions</h3>
<p>
[Explain your design choices. Why did you choose this chart type?
What visual encodings did you use? What interactive features
did you include and why?]
</p>
<!-- TABLEAU EMBED CODE -->
<!-- ==========================================
Paste your Tableau Public embed code here.
Must be published in YOUR account (not instructor's).
Delete the placeholder div below.
========================================== -->
<div style="border: 2px dashed #ccc; padding: 20px; text-align: center; margin: 20px 0;">
<p><strong>⚠️ REPLACE THIS SECTION</strong></p>
<p>Paste your Tableau Public embed code here</p>
<p><small>Delete this placeholder div entirely and replace with your embed code</small></p>
</div>
<h3>Key Insights</h3>
<p>
[What did you discover?]
</p>
<footer>
<strong>Data Source:</strong> [Dataset information and URL]
</footer>
</article>
<!-- ============================================
VISUALIZATION 3: STATIC IMAGE EXAMPLE
For Python/R/other tools - export as image
============================================ -->
<article>
<header>
<h2>3. [Title of Your Third Visualization]</h2>
</header>
<h3>Context & Question</h3>
<p>
[What question does this visualization address?]
</p>
<h3>Design Decisions</h3>
<p>
[Explain your design choices. What tool did you use
to create this? Why this visualization approach?]
</p>
<!-- STATIC IMAGE -->
<!-- ==========================================
Export as PNG/SVG, save in same folder.
Include image file in your ZIP.
========================================== -->
<img src="[your-image-filename.png]"
alt="[Brief description of visualization]"
style="max-width: 100%; height: auto; border: 1px solid #ddd;">
<h3>Key Insights</h3>
<p>
[What did you discover?]
</p>
<footer>
<strong>Data Source:</strong> [Dataset information and URL]
</footer>
</article>
<!-- ============================================
VISUALIZATION 4 - Copy a template above
Minimum 5 visualizations required!
============================================ -->
<article>
<header>
<h2>4. [Title of Your Fourth Visualization]</h2>
</header>
<h3>Context & Question</h3>
<p>[Your text here]</p>
<h3>Design Decisions</h3>
<p>[Your text here]</p>
<!-- Add your visualization here (copy from examples above) -->
<div style="border: 2px dashed #ccc; padding: 40px; text-align: center;">
<p><strong>Add your visualization here</strong></p>
<p>Copy one of the templates above (Vega-Lite, Tableau, or Image)</p>
</div>
<h3>Key Insights</h3>
<p>[Your text here]</p>
<footer>
<strong>Data Source:</strong> [Dataset information]
</footer>
</article>
<!-- ============================================
VISUALIZATION 5 - Copy a template above
This is the minimum. You can add more!
============================================ -->
<article>
<header>
<h2>5. [Title of Your Fifth Visualization]</h2>
</header>
<h3>Context & Question</h3>
<p>[Your text here]</p>
<h3>Design Decisions</h3>
<p>[Your text here]</p>
<!-- Add your visualization here -->
<div style="border: 2px dashed #ccc; padding: 40px; text-align: center;">
<p><strong>Add your visualization here</strong></p>
</div>
<h3>Key Insights</h3>
<p>[Your text here]</p>
<footer>
<strong>Data Source:</strong> [Dataset information]
</footer>
</article>
<!-- ============================================
ADD MORE VISUALIZATIONS: Copy an <article> block above
============================================ -->
<!-- ============================================
REFLECTION (Optional but recommended)
============================================ -->
<article>
<header>
<h2>Reflection</h2>
</header>
<p>
[OPTIONAL: What did you learn through creating this portfolio?
How did your understanding of data visualization principles evolve?
What challenges did you face and how did you overcome them? What
would you do differently next time?]
</p>
</article>
<!-- ============================================
AI USAGE DOCUMENTATION (If applicable)
See ASSIGNMENT.md for AI policy requirements
============================================ -->
<article>
<header>
<h2>AI Usage Documentation</h2>
</header>
<p>
[IF YOU USED AI: Document what you used it for and include shared conversation links or PDFs.
Create an AI_Documentation folder in your ZIP with these files.
IF YOU DID NOT USE AI: Delete this entire AI Usage Documentation section.]
</p>
<p>
<small><em>Remember: All AI usage must be documented. Include links to shared conversations
or PDF exports in a folder called AI_Documentation in your ZIP archive.</em></small>
</p>
</article>
<!-- ============================================
FOOTER
============================================ -->
<footer style="margin-top: 3rem; padding-top: 2rem; border-top: 1px solid #ddd;">
<p>Created by [Your Name] | Principles of Data Visualization | KSE Fall 2025</p>
<p>Last updated: [Date]</p>
</footer>
</main>
<!-- ============================================
BEFORE SUBMITTING:
✓ All [placeholders] replaced with your content
✓ Minimum 5 visualizations included
✓ Video link working and embedded
✓ Introduction explains unified theme (3-5 sentences)
✓ Each viz has: Context, Design, Insights, Source
✓ ZIP named: Portfolio_[LastName]_[FirstName].zip
✓ All datasets and AI documentation included in ZIP
📋 Complete checklist in ASSIGNMENT.md
DELETE THIS COMMENT BLOCK BEFORE SUBMITTING!
============================================ -->
</body>
</html>